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We study information processing in a peripheral sensory receptor system which possesses spontaneous
dynamics with two distinct rhythms. Such organization was found in the electrosensory system of paddlefish
and is represented by two distinct and unidirectionally coupled oscillators, resulting in biperiodic spontaneous
firing patterns of sensory neurons. We use computational modeling to elucidate the functional role of sponta-
neous oscillations in conveying information from sensory periphery to the brain. We show that biperiodic
organization resulting in nonrenewal statistics of background neuronal activity leads to significant improve-
ment in information transfer through the system as compared to an equivalent renewal model.
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I. INTRODUCTION

Rhythmic spontaneous activity was observed in various
peripheral sensory systems. Endogenous rhythms were found
in auditory and vestibular peripheral systems in the form of
mechanical oscillations of hair bundles of sensory cells
�1–3�, receptor potential oscillations �4,5�, and pacemaker-
type firing of sensory vestibular afferent neurons �6�. These
sensory receptors have a specific structure where detector
hair cells in a sensory epithelium excite primary afferent
neurons. Recent studies have shown that spontaneous me-
chanical oscillations of hair bundles in auditory hair cells of
lower vertebrates are responsible for extreme sensitivity and
selectivity of auditory system �7�. However, functional role
of spontaneous oscillations of hair cells’ membrane potential
observed in Ref. �4� is unclear. Ampullary electroreceptors,
those that are found in several aquatic animals, have struc-
ture similar to auditory and vestibular receptors mentioned
above. Hair cell-type receptor cells are coupled via excita-
tory synapses to sensory afferent neurons which send their
axons to the brain. Spontaneous noisy transepithelial
20–30 Hz oscillations were reported in electroreceptors of
skates �8–10�. The functional role of these oscillations was
hypothesized to be in secretion of neurotransmitter which is
necessary to account for observed background periodic firing
of sensory afferent neurons �10�. Two distinct types of oscil-
lators were found in peripheral ampullary electroreceptors of
paddlefish. The first type resides in population of epithelial
cells, while the second type resides in the terminals of sen-
sory afferent neurons �11,12�. Similarly to skate electrore-
ceptors the fundamental frequency of epithelial oscillations
is at 26 Hz �at room temperature� and is not affected by
external electric field stimuli �12�. Unidirectional coupling of
epithelial oscillator to afferent oscillator, oscillating with fun-
damental frequency in the range 30–70 Hz, results in quasi-

periodic dynamics of the system �see Fig. 1 in Refs. �12,30�
for a cartoon showing the organization of the paddlefish elec-
troreceptors�. The frequency content of natural stimuli which
may be encountered by paddlefish is in the range 0.5–20 Hz
�13–16� and the frequency response of electroreceptors
matches this range �16,17�. Thus, a possible role of epithelial
oscillations in electroreceptors must be different from that in
auditory receptors, whereby self-sustained oscillations of
hair cell bundles are synchronized by weak external stimuli
leading to strong and sharp resonances. Rather, since the
frequency of these oscillations is invariant with respect to
external stimuli, the epithelial oscillations may be considered
as source of narrow-band internal noise which makes a major
contribution to the variability of spontaneous receptor’s dy-
namics �11,12�.

A distinctive property of spontaneous dynamics of
paddlefish electroreceptors is nonrenewal statistics of their
firing patterns �11,12�, which is evident from extended serial
correlation of afferents’ interspike intervals �ISI�. Nonre-
newal statistics of spontaneous neuronal firing was a subject
of several recent studies �18–22�. In particular, several stud-
ies have elucidated the role of negative serial correlations of
sensory neurons of P-type electroreceptors in improving in-
formation transfer �18,19,23�. The effect of enhancement of
information transfer was explained in terms of shaping the
power spectrum of background activity �23,24�. Nonrenewal
stochastic dynamics observed in these studies resulted from
internal properties of neurons, such as spike-frequency adap-
tation �25–27� or threshold fatigue �19,28,29�. In contrast,
we have shown that extended serial correlations in paddlefish
electroreceptors are mainly due to epithelial oscillations ex-
citing afferent neurons �12,30�. Furthermore, the structure of
serial correlations and their correlation length is determined
by the frequency ratio of epithelial to afferent oscillators fre-
quencies. These serial correlations leads to significant reduc-
tion of noise power in low frequency band and thus may lead
potentially to enhancement of encoding of low-frequency
stimuli �30�. In this work we use a simple computational
model �30� based on so-called theta neuron model �31–33� to
study the significance of the receptor oscillations in encoding
of weak external time-varying stimuli by sensory receptors.

*Also at: Department of Physics, Federal University of Technol-
ogy, Akure, PMB 704, Nigeria.

†neimana@ohio.edu

PHYSICAL REVIEW E 78, 051922 �2008�

1539-3755/2008/78�5�/051922�8� ©2008 The American Physical Society051922-1

http://dx.doi.org/10.1103/PhysRevE.78.051922


The parameters of the model were tuned to reproduce statis-
tical properties of spontaneous dynamics of electroreceptors
in paddlefish. To elucidate the role of nonrenewal dynamics
induced by receptor’s oscillations we compared information
transmission through the original model with oscillations to a
renewal model which possesses the same first-order statistics
but lacks epithelial oscillations and thus serial ISI correla-
tions.

II. MODEL AND METHODS

A. Model

We model stochastic biperiodic dynamics of electrorecep-
tors as unidirectional coupling of epithelial oscillators, rep-
resented by a stochastic narrow-band process, to a self-
sustained oscillating neuron, which we model using so-called
theta neuron model. Theta neuron model is a canonical
model for type-I spiking �31,33� and is equivalent to an in-
tegrate and fire neuron with quadratic nonlinearity. It was
successfully employed to study various aspects of neuronal
dynamics, including stochastic dynamics of neurons �34,35�,
synchronization in neuronal networks and emergence of
rhythms �36,37�, to name a few. A modified version of this
model was used to study spontaneous dynamics of biperiodic
electroreceptors in Ref. �30�. The dynamics of afferent neu-

ron is given by the phase variable � defined on a circle: �̇
=1−cos �+R�1+cos �� mod2�, where R is the parameter
related to external current applied to the neuron. The theta
neuron “fires” when ��t� crosses � so that the spike train
produced by the model is x�t�=�����t�−��, where summa-
tion is taken over crossing events. For negative values of R
the system is excitable with a pair of stable and unstable
equilibria. For positive values of R the theta neuron fires
periodically at the rate �R /�. In our case the parameter R is
timedependent and is modulated by the epithelial oscillations
signal e�t�, a broad-band noise ��t� and by time-dependent
stimulus y�t�. We also included a slow adaptation u�t� �32� to
account for short-range negative correlations observed in ex-
periments when epithelial oscillations were absent �11�. The
model equations are

�̇ = 1 − cos � + �1 + cos ���R0 + e�t� + ��t� − u + y�t�� mod2� ,

u̇ = − �u + s��� − �� . �1�

In Eq. �1� R0 stands for the constant component of the cur-
rent which sets the fundamental frequency of afferent oscil-
lator. The second equation describes slow adaptation u�t�,
where � is the rate of adaptation ���R0 /� and s is the
strength of adaptation. The epithelial oscillations arising in a
population of cells is modeled by zero-mean Gaussian
narrow-band process e�t� with the power spectrum

Pee�f� =
�f0

2A2

�f2 − f0
2�2 + �2f2 , �2�

where A is the standard deviation of the process, f0 is the
natural frequency, and � determines the width of the spectral
line �� f0. In simulations e�t� was obtained by solving lin-

ear stochastic differential equations for a linear damped os-
cillator perturbed by Gaussian white noise �38�. The broad-
band noise ��t� in Eq. �1� was modeled by exponentially
correlated Ornstein-Uhlenbeck process with the intensity D
and correlation time 	c. The autocorrelation function of this
process is given by �39�

���t���t + 	�� =
D

	c
exp	−


	

	c
� . �3�

The correlation time 	c was chosen to be much smaller than
any other time scale in the system, so that noise ��t� is ef-
fectively white.

The model equations �1�–�3� are dimensionless, resulting
in a sequence of spike times tn, when � crosses �. We used
experimental data from paddlefish electroreceptors to choose
parameter values for the dimensionless model. Epithelial os-
cillations �EOs� result from the collective activity of hun-
dreds of cells in the epithelial layer of electroreceptors. The
fundamental frequency of the EO in different electrorecep-
tors and in different paddlefish is very similar 26
1.6 Hz, at
room temperature �22 °C� with the width of the spectral
peak 1.7
0.4 Hz �12�. In contrast to the EO, the fundamen-
tal frequency of the afferent oscillator �AO� is distributed
over a wide range of 30–70 Hz for different afferents in
different fish �12�. The ratio of epithelial to afferent oscillator
frequencies is w=0.49
0.08. As in Ref. �30� we use the
period of the EO as a reference time scale for the model. In
the following we fix dimensionless frequency of the EO in
Eq. �2� at f0=1 /2�. Then the parameter R0 is chosen such
that the ratio of epithelial to afferent oscillators frequencies
w is around 0.5, as in experimental data. Other dimensionless
parameters determining time scales were chosen as �=0.02,
�=0.05f0, 	c=0.02. The transition from dimensionless time
to time in seconds is given by t�s�= t / �2�fe�, where fe
=26 Hz is the EO frequency. In practice, we integrated nu-
merically dimensionless model equations and then renormal-
ized dimensionless spike times to spike times in seconds for
further processing �30�. In the following we always keep the
frequency of the EO fe constant while changing the param-
eter R0 which leads to the change of the frequency of the AO,
fa and thus to the change of the frequency ratio w= fe / fa.
Time varying stimulus y�t� in Eq. �1� is Gaussian band-
limited noise with cutoff frequency fc and standard deviation
�, which was obtained by linear filtering of white noise as in
Ref. �29�. Stimulus variance was kept constant while varying
cutoff frequency, so that the power spectrum of the stimulus
is given by Pyy =2�2 / fc.

B. Measures of variability and response

The spike train generated by the model was constructed as
a sum of delta functions centered at spike times tn:

x�t� = �n��t − tn� �4�

with ISI Tn= tn− tn−1, n=1, . . . ,N, where N is the total num-
ber of spikes in a train. The mean firing rate �f� was calcu-
lated as reciprocal to the mean interspike interval �f�
=1 / �Tn�.
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Several measures were used to characterize variability of
spontaneous dynamics when the stimulus was turned off, �
=0. First order statistics included the probability density of
ISI and the coefficient of variation of ISI calculated as the
ratio of standard deviation of ISI to the mean ISI: cv
=std�Tn� / �Tn�. The second order statistics measures included
normalized autocorrelation function of ISI, also known as the
serial correlation coefficient �SCC�, and the power spectrum
of the spike train �40�. The SCC was calculated as

C�k� =
�TnTn+k� − �Tn�2

�Tn
2� − �Tn�2 . �5�

The extension of serial correlation was characterized by the
correlation length

tcor = �
k=1




C�k�
 . �6�

The power spectrum of a spike train was calculated as in Ref.
�40�.

The response of the model to external stimulus y�t� was
characterized in terms of the system gain H�f� and the co-
herence function ��f� �41�,

H�f� =

Pxy�f�

Pyy�f�

, �7�

��f� =

Pxy�f�
2

Pxx�f�Pyy�f�
, �8�

where Pxy�f� is the cross-spectral density of the spike train
x�t� and stimulus y�t�; Pxx�f� and Pyy�f� are power spectral
densities �PSDs� of the spike train and stimulus, respectively.
The coherence function is a normalized measure of cross-
correlations between stimulus and neural response and
ranges between 0 and 1. It can be related to the lower bound
of mutual information rate by �42–44�

I = − �
0

fc

log2�1 − ��f��df , �9�

in units of bits per second. In the following we normalize the
information rate by the mean firing rate I / �f�, which gives
the information rate in units of bits per spike �44�.

C. Nonrenewal and renewal models

In order to elucidate the role of epithelial oscillations in
information transmission through the system we compared
response properties of the original model �1� to a modified
model in which the EO and slow adaptation were turned off,
A=0, s=0:

�̇r = 1 − cos �r + �1 + cos �r��Rr + ��t� + y�t�� . �10�

In the absence of stimulus ��=0� this modified model gen-
erates spike trains with statistics close to renewal and is de-
termined by two parameters: Rr and noise intensity Dr. In the
following we call this model “renewal.” First-order statistics
of spontaneous firing is determined by the probability den-

sity of ISI �45�. For a given parameter set of the original
model �1� the parameters of the renewal model Rr and Dr
were changed until the probability density of ISI of renewal
model pr�T� matched the ISI probability density of the origi-
nal model p�T�. The closeness of two ISI distributions was
characterized by the Kullback-Leibler distance �46,47�

K�p,pr� =� pr�T�ln
pr�T�
p�T�

dT . �11�

Thus, for a given set of parameters of the original model the
numerical procedure was as follows.

�i� Stimulus y�t� was turned off, �=0, and ISI distribution
of the original model p�T� was estimated. �ii� Two param-
eters of the renewal model were changed to minimize the
Kullback-Leibler distance �11� between p�T� and pr�T�. This
step gave parameter values of the renewal model providing
the best match of the first order statistics for the original and
renewal models. �iii� Stimulus y�t� was applied to both mod-
els; coherence functions and information rates were calcu-
lated and compared. Numerical simulations of Eqs. �1� and
�10� were conducted using the Euler scheme with the time
step 10−3, and the duration of simulation for each parameter
value was equivalent to 10 min.

Figure 1 shows an example of application of steps �i� and
�ii� described above to a particular set of parameters. Prob-
ability density of ISIs of the original model �1� is shown in
Fig. 1�a� by solid �red� line, reflecting spontaneous firing
with the mean firing rate of 60.7 Hz and CV=0.177. Param-
eters Rr and Dr of the renewal model �10� were tuned to
minimize the Kullback-Leibler distance shown in Fig. 1�b�.
The dashed �blue� line in Fig. 1�a� shows ISIs probability
density of the renewal model pr�T�, calculated for the param-
eter values obtained by minimization of the K�p , pr�. Both
probability densities perfectly match. Second-order statistics
of original model is characterized by extended serial corre-
lations �Fig. 1�c�� and by the power spectral density with
characteristic structure of peaks �Fig. 1�d��. The EO and AO
are represented by the peaks at fe and fa, respectively, along
with the sidebands at fa
 fe. As expected, the modified
model �10� is characterized by renewal statistics verified by
�-correlated ISI, dashed �blue� line in Fig. 1�c�. Comparison
of power spectral densities of two models �Fig. 1�d�� reveals
the effects of EO and extended serial correlations: �i� the
power at low frequency of the original model is an order of
magnitude lower than that of the renewal model; �ii� the
width of afferent spectral peak at fa is significantly narrower
for the original model.

III. RESULTS

A. Coherence and gain for original and renewal models

The transfer �gain� functions, H�f� of the original and
renewal models are shown in Fig. 2�a�. For a given param-
eter set, the gain functions of both models are very close
except at low frequencies f �1 Hz, where the gain of the
original model �solid �red� line in Fig. 2�a��, increases with
frequency owing to high-pass filtering effect of adaptation
�27�. When adaptation was turned off �s=0, dotted �green�
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line in Fig. 2�a�� but epithelial oscillations were still pre-
sented the gain functions of both model were close within
the whole stimulus frequency band. For this case of no ad-
aptation the same procedure of tuning the parameters Rr and
Dr was used as described in Sec. II C. In contrast, the coher-
ence functions of the original model is significantly �2–2.5
times� larger than that of renewal model �Fig. 2�b��. This
clearly indicated that the external signal was transmitted
more efficiently by the original model than by the renewal
model. The mutual information rates I estimated from these
coherence functions were 0.33 bit/spike for the original

model and 0.10 bit/spike for the renewal model. Slow adap-
tation had a small effect on both the coherence function and
on the mutual information rate. This improvement of signal
transmission can be explained using the concept of noise
shaping �19,23�. In the linear response approximation the
coherence function can be written as �48�

��f� =

H�f�
2Pyy�f�

Pxx
�0��f� + 
H�f�
2Pyy�f�

, �12�

FIG. 1. �Color online�. Spontaneous dynamics of the original and renewal models. Solid �red� lines and dashed �blue� lines correspond
to the original and renewal models, respectively. Parameters of the original model were R0=7, A=0.5, D=0.02, s=0.3, �=0.02, s=0.3,
1 /	c=50. �a� Probability densities of ISI. �b� Kullback-Leibler distance �11� as a function of the parameters of renewal model Rr and Dr.
K�p , pr� possesses global minimum at Rr=1.363 and Dr=0.355. These parameter values were used for simulation of the renewal model
shown by dashed �blue� lines in panels �a�, �c�, and �d�. �c� Serial correlation coefficients �SCC� of ISIs; circles and squares correspond to
the original and renewal models, respectively. �d� Power spectral densities �PSD� of spontaneous spike trains generated by the original and
renewal models. fa, afferent oscillator peak. fe, epithelial oscillator peak. The circle indicates the first crossing of PSDs.

FIG. 2. �Color online�. Gain �a� and coherence functions �b� for the original and renewal models stimulated with band-limited Gaussian
noise with cutoff frequency fc=20 Hz and standard deviation �=0.2. In both panels dashed �blue� lines correspond to the renewal model;
solid �red� lines correspond to the original model with R0=7, s=0.3, D=0.02; dotted �green� lines correspond to the original model with
R0=1.43, s=0, D=0.02. The parameters of the renewal model were tuned to match first-order spontaneous statistics of the original model.
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where Pxx
�0��f� is PSD of spontaneous firing representing

background noise in the system. According to Eq. �12� the
smaller is Pxx

�0� the larger is the coherence. PSD of spontane-
ous firing of the original model displays significantly less
power in the stimulus frequency range as compared to re-
newal model �see Fig. 1�d�� hence leading to increased co-
herence and information rate.

B. Information rate versus frequency ratio of two oscillators

The structure of ISI serial correlations is determined by
the ratio of frequencies of epithelial to afferent oscillators
w= fe / fa �30�. The longest and strongest serial ISI correla-
tions were observed for w close to 0.5: the correlation length
is maximal at w=0.5, while the first correlation lag of SCC is
minimal at w=0.48. This is illustrated in Figs. 3�a� and 3�b�
by showing the ISI correlation length and the first lag of the
SCC versus the frequency ratio w, where the mean firing rate
fa was varied by changing R0. The increase in ISI correlation
length led to enhancement in signal transmission as shown in
Fig. 3�c�. Mutual information rate of the original model pos-
sessed a maximum at w=0.5. The difference between the
information rate of the original and renewal models �I
=Ioriginal−Irenewal characterizes the enhancement of signal
transmission or information gain due to the presence of ISI
correlations in the original model. �I shows nonmonotonous
dependence on the frequency ratio with a maximum at w
=0.48, as indicated in Fig. 3�c�.

C. Information rate versus stimulus parameters

Figure 4�a� shows the dependence of information rate ver-
sus stimulus strength for a fixed stimulus bandwidth �fc

=20 Hz�. Mutual information rates of both models increases
with the increase of stimulus strength. However, mutual in-
formation rate of the original model increases faster than that
of the renewal model, resulting in significant information
gain �I. Furthermore, information gain shows nonmonoto-
nous dependence passing trough a maximum at small stimu-
lus strength �A. Thus, enhancement of information trans-
fer through the system due to serial correlation is best
pronounced for weak stimuli. For both, extremely weak ��
�A� and for strong ���A� stimuli the information gain
tends to vanish. The same observation was made in the pre-
vious work on negative serial correlations �24,29�. For van-
ishing stimuli information rates of both model vanish. On the
other hand, strong stimuli ��A overwhelm epithelial oscil-
lations, so that nonrenewal dynamics does not matter, hence
mutual information rates of both models coincide.

The dependence of mutual information rates on the cutoff
frequency of Gaussian stimuli �Fig. 4�b�� also showed non-
monotonous dependence. The stimulus variance was held
constant when fc was varied. Thus, an increase of cutoff
frequency resulted in corresponding decrease of height of
stimulus spectral density. In the limit of large cutoff frequen-
cies the stimulus intensity vanishes and so must the response
of the system. On the other hand, shrinking the stimulus
band results in a decrease in the information available for the
system. As a result, mutual information rates of both models
decreased for low and high cutoff frequencies undergoing a
maximum at 15–20 Hz, depending on the ratio of the affer-
ent to epithelial oscillation frequencies w. The difference of
information rates �I repeated a bell-shaped curve of mutual
information rate of the original model. The exact position of

FIG. 3. Dependence of ISI correlations and information transfer on the ratio of the afferent to epithelial oscillation frequencies w
= fe / fa. ISI correlation length �a� and the first lag of SCC �b� versus w for spontaneous firing of the original model. Mutual information rates
for the original �solid line� and renewal �dashed line� models and the difference �I=Ioriginal−Irenewal �circles�, versus w. In numerical
simulations we varied the parameter R0 of the original model �1� changing the frequency of AO fa, while the frequency of EO fe was fixed.
The stimulus parameters were fc=20 Hz, �=0.2. Other parameters were the same as in Fig. 1.

SPONTANEOUS FIRING STATISTICS AND INFORMATION… PHYSICAL REVIEW E 78, 051922 �2008�

051922-5



the maximum is set by the relation of the stimulus cutoff
frequency and peaks frequencies in the afferent power spec-
trum. The region of the low-frequency shaping due to serial
correlations is limited by a critical point at which PSDs of
the original and renewal models cross each other for the first
time �24,29� �see Fig. 1�d��. For w�0.5 the first intersection
of renewal spectrum occurs with the epithelial oscillation
peak fe, while for w�0.5 the first intersection occurs with
the sideband fa− fe. These peaks represent internal noise in
the system. Depending on the stimulus cutoff frequency ei-
ther peaks can appear to be within the stimulus band, wors-
ening information transmission through the original system.
Similar resonancelike dependence of mutual information rate
vs stimulus cutoff frequency was reported in experimental
study �19� for P-type electroreceptors and in theoretical
works �24,29� for a model with short-term negative ISIs cor-
relations. The dependence of mutual information rate on the
frequency ratio w and on the stimulus cutoff frequency fc for
the fixed stimulus strength is summarized in Fig. 5.

Both, the mutual information rate of the original model
and the information gain due to epithelial oscillations pos-

sess a global maximum. The location of the maximum of the
mutual information rate occurs at w=0.53 and fc=17 Hz.
The maximum of the gain in mutual information occurs at
the same cutoff frequency, but at w=0.47.

IV. CONCLUSION

We used a minimal model to study information transmis-
sion through a receptor system composed of two unidirec-
tionally coupled stochastic oscillators. Such an organization
was found in the peripheral electrosensory system of paddle-
fish �12� and is likely to be the case for other ampullary
electroreceptors found in sharks and rays. In this system only
one oscillator residing in sensory neuron is affected by the
stimulus, while the other oscillator, residing in population of
epithelial cells is invariant with respect to stimulation, acting
as a source of internal narrow-band noise. In the model, the
epithelial oscillations were mimicked by Gaussian narrow-
band noise with the spectral peak at fe=26 Hz and the width

FIG. 4. Mutual information rates of the original �solid line�,
renewal �dashed line� models, and the information gain �I �circles�
versus stimulus parameters. �a� I, �I versus stimulus standard de-
viation normalized to the strength of epithelial oscillations � /A for
the fixed stimulus cutoff frequency fc=20 Hz. �b� I, �I versus
stimulus cutoff frequency for �=0.2. Other parameters were the
same as in Fig. 1.
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1.4 Hz, as observed in experiments with paddlefish electrore-
ceptors �12�. The afferent neuron was modeled by the ca-
nonical theta neuron system. The firing rate of the neuron
was varied in the range 40–70 Hz. Epithelial oscillations
modulate afferent firing leading to extended serial correla-
tions of ISI. Because the ratio of the epithelial to afferent
oscillation frequencies is in the range 0.4-0.6 the first lag of
serial correlation coefficient is always negative �30� leading
to enhanced order in the sequence of ISI, where a short in-
terspike interval is followed by long interval, and vice versa
�49�. Serial correlations extended to several dozens of ISI
depending on the ratio of epithelial to afferent oscillation
frequencies.

We have contrasted transmission of a Gaussian bandlim-
ited signal through two model systems: �i� The original sys-
tem with epithelial oscillations and hence nonrenewal spon-
taneous firing of afferent neuron and �ii� the renewal system
with epithelial oscillations turned off and with parameters
tuned to match the first order statistics of the original system.
The coherence between the stimulus and spike trains was
significantly �2-3 times� higher for the original model as
compared to renewal model, indicating much better signal
transmission through the model with epithelial oscillations.
We have characterized this further by calculating the lower
bound of mutual information rate, showing that the mutual
information rate of the original model is significantly higher
than that of corresponding renewal model. Thus, epithelial
oscillations act to increase low-frequency signal transmission
as we hypothesized before �12,30�. Furthermore, the mutual
information rate and the gain in information rate due to epi-
thelial oscillations showed nonmonotonous dependence on
the ratio of the epithelial to afferent oscillation frequencies w
being maximal at w close to 0.5, corresponding to longest ISI
correlations. Similar to previous studies on negative serial
correlations �19,24,29� we have found a nonmonotonous de-
pendence of the mutual information rate on the stimulus pa-
rameters. The information about the stimulus encoded in the
afferent spike train is maximized for a stimulus strength not

exceeding the strength of epithelial oscillations, and for the
stimulus cutoff frequencies in the range 17–20 Hz. The mu-
tual information rate vanished at low stimulus cutoff fre-
quencies. Low frequency stimuli in the range 0.1–1 Hz may
be encountered by electroreceptors when an animal is slowly
passing a dipolelike source of electric field �17�. For such
low-frequency stimuli a signal detection theory is more ap-
propriate than information measures used here �19�. Previous
studies �19,24� have shown that negative ISI correlations
suppress low-frequency noise power decreasing variability of
neural responses to low-frequency stimuli and thus signifi-
cantly enhance information transmission through the system.
However, the origin of negative correlations in these studies
was rooted in the internal properties of the sensory neuron
itself, such as slow adaptation currents or threshold fatigue.
As a result, the serial correlation coefficient showed just one
significant negative value at the first lag. The mechanism of
serial correlations in our model is different, since the epithe-
lial oscillation were the main source of long-lasting oscilla-
tory serial correlations �30�.

Although the parameters of our model were tuned to
match spontaneous and response properties of eletroreceptors
in paddlefish, our results are applicable to general situations
of spiking neurons perturbed by colored noise. Previous
work considered influence of exponentially correlated noise
�20,50,51�, resulting in positive exponential serial correla-
tions. Here we studied the case of narrow-band noise and
showed that such internal noise results in significant im-
provement of low-frequency signal transmission through the
system.
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